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Abstract. We develop a mathematical model of a statistically homogeneous rough surface that satisfies the 
following conditions: (1) It has the given two-dimensional (anisotropic) spectrum. (2) It has the given (non- 
Gaussian) joint probability distribution function (PDF) of two principal slopes at any fixed point. (3) It allows us 
to obtain in an explicit form the joint probability distribution (characteristic function) for an arbitrary number 
(N) of differences in elevation £ (r'fc) — C (rjjj) of the surface. (4) It allows us to find in an explicit analytical form any 
mean scattering cross sections appearing in any theory of wave scattering from rough surface. (5) In describing the 
non-Gaussian PDF we use, instead of the cumulant expansion, another approach: decomposition of the multivariate 
non-Gaussian PDF in the sum of multivariate Gaussian PDF having different positions and different variances 
and correlation coefficients. Using this model, we calculated in the Kirchhoff approximation the scattering from a 
perfectly reflecting rough surface, having non-Gaussian PDF of slopes and anisotropic spectrum (they correspond 
to experimental data for wind-driven waves on the water’s surface). In the Kirchhoff approximation we obtained 
significant differences between Gaussian and non-Gaussian cases with the same spectrum, especially in the range 
of small grazing angles.

1. Introduction

Wave scattering from random surfaces depends on different parameters of surface depending on conditions. 
The important parameter of the scattering process is the Rayleigh parameter Ra = v0a, where = /csin<90, 0O is 
the grazing angle of the incident wave, A; is a wave-number, is a vertical component of the incident wave-vector, 
and o is the variance of the surface elevations.

If Ra <C 1, the Bragg scattering mechanism works and in this case the scattering cross section E depends only 
on the spectrum of surface

E ~ 4> (q — q0). (1.1)
Here, 4> is the Fourier transform of the correlation function Bc (r)xof surface elevations £ (r), i.e.,

£(r) = (C(r')C(r + r')>,

((•••) denotes the mean value) and

$ (q - qo) = JJ exP H (q - qo)r] Bc (r)

B( (r) =  exp (iqr) $ (q) <fq =  cos (qr) <f> (q) cPq.

(1.2)

JJ JJ
In the case of Ra < 1, the scattering cross section does not depend on the probability distribution of elevations 
or surface slopes.

If Ra > 1, the Bragg scattering mechanism does not work and several more complicated scattering theories 
must be applied. If the curvature radii of the surface are much larger than the wavelength, we can describe the 
scattering process using the Kirchhoff approximation. In this case, the scattering cross section depends on the 
characteristic function of differences in elevation at two arbitrary points, ri and r2:

(exp {ia [C (ri) - C (r2)]}), a = v + vQ. (1.3)



Here, v is the vertical wave-number of the scattered wave. In the case of very large k, only the linear term of 
expansion of £ (ri) — C (r2) in powers of (ri — r2) is important,

C (ri) - C 0*2) ~ (ri - r2) VC (r2) H---- •

In this case the Kirchhoff approximation reduces to the geometric optics (GO) approximation and the scattering 
cross section depends only on the probability distribution function (PDF) of surface slopes VC (r). This result 
has a simple physical meaning: the scattering cross section is proportional to the number of surface facets having 
the appropriate slope, i.e., satisfying the condition of specular reflection. Thus, the scattering cross section in the 
Kirchhoff case depends on a quite different property of the surface: the PDF of differences in elevation (the PDF 
of slopes, in the GO case) rather than on the surface spectrum.

2. Which statistical characteristics of the surface completely describe the scattering 
cross section?

It is clear that, in general, the scattering cross section may depend not only on both of these parameters (spectrum 
and (exp {ia [C (rx) - £ (r2)]})), but on some more complicated parameters of the surface.

It was shown by Tatarskii [37] that any solution of the scattering problem can be presented as a functional, 
depending only on the functions of the type

£ (a, r) = exp [iaC (r)] (2.1)

with different a and r. This means that the mean scattering cross section E can be presented as a functional 
Taylor series of the form

E = Aq + j j d2r J daAi (a, r) (£ (a, r)) +

f f d2r' J da' jj d2r" j da"A2 (a', r'; a", r") (£ (a', r') £ (a", r")) +/f dV f da’ jf d?r" f da" j da1" J j dV"x
As (a', r'fa", r", a"', r'") (£ (o' r') £ (a", r") £ (a'", r'")) + - ■ •.

(2.2)

If we take into account only the four beginning terms of this expansion (up to A±), we obtain as was shown in [37], an 
approximate formula that includes in particular cases the Bragg scattering, the Kirchhoff approximation, the small- 
slope approximation[39],[34], the tilt-invariant approximation^], and the double Kirchhoff approximation[15],[40]. 
The mean values, appearing in (2.2) are characteristic functions (CF) of one-point, two-point, etc., joint PDF of 
surface elevations, i.e.,

{£ (a, r)) = xi (<*, r) = (exp [ia< (r)])
(£ (a', r') £ (a", r")) = x2 (a', r'; a", r") = (exp \ia’C (r') + ia"C (r")])

(£ («i, rx) ■ ■ ■£ (a„, r„)) = Xn («i, ri;...; a„, rn) = (exp [iaqC (ri) + • • • + ian( (r„)]) •

Thus, to calculate all these mean values it is enough to know the corresponding CF. The more orders of the 
scattering iterative term we consider, the more orders of CF are necessary.

The important property of scattering cross section E is its invariance with respect to translations of the 
scattering surface as a whole. If we denote the scattering cross section corresponding to the surface 2 = £ (r) as 
E [C (•)]> this property is expressed by the formula

E[<(-) + /i]=E [<(•)]• (2.4)

It follows from this formula, that E really depends only on such combinations of £ that do not change during 
translations of the surface. In other words, E may depend only on the differences of the type C (r') - C (r").
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In terms of CF (2.3) the invariance property (2.4) takes the form

(exp ii ^2. , ai [C fa) + h}\) = (exp (i V" ayC fa) + ih =
/ }^r ^ a\ (2-5)

It follows from this formula that the only CF that may enter in the expression for £, are those for which
n

J2ak=0. (2.6)
k=1

The general formula for the characteristic function satisfying the property (2.6) is as follows (we use the special 
notation © for CF that satisfy the condition (2.6)):

0 (a) = (exp [foi (Cl. — Ci) H------ H ian (Cn - C)]) • (2.7)

Here, Cfc = C (rk), C'k — C (r^.), and a'k — ~ak- In fact, (2.7) is the standard CF for differences (Ck — ('k). Note that 
some of (k may coincide with Cl or with £/; for instance, <2 = Ci- Because of this the total number of different 
points rfc, r' in formula (2.7) may be either even or odd.

It follows from this analysis that the only statistical characteristics that are necessary to describe the scattering 
cross section are joint PDF or joint CF for differences in elevation at several points of the random surface.2Because 
of this the factor A\ (a,r) in (2.2) must be zero.

If we consider the formulae for different terms of expansion of £, obtained in [37] ((1.3) corresponds to the 
first term of this expansion), we can ascertain that all of them have the form (2.7).

Usually, in all theoretical (analytical and numerical) studies of the rough-surface scattering problem the 
Gaussian PDF assumption is used. But many scattering surfaces have a PDF that differs from this basic law. 
As an example, we present in Figure 2.1 the PDF of water surface elevations, obtained in [12] for wind-driven 
surface waves corresponding to frictional velocity 1.24 ra-s-1. The significant deviation from the Gaussian PDF 
is evident. In the Longuet-Higgins paper [19] a statistical theory of gravity waves was developed in which it was 
shown that because of the nonlinearity of equations deviations from Gaussian PDF must appear. The method of 
cumulants was used in this paper to describe these deviations.

The question, arises: How significant is this deviation for wave scattering from the sea surface? This problem 
was discussed in [25],[26], and [35].

To approach on answer to this question we developed in [36] a statistical model of the surface that possesses 
the following properties: (1) It has the given PDF of elevations in any fixed point of the surface. (2) It has the 
given anisotropic spectrum. (3) It is possible to find an explicit analytical formulae for any characteristic function 
of the type (2.3) for any n.

As was shown in [37], using this information we are able to find, in an analytical form, the mean values entering 
into scattering theories.

The problem of how to construct a statistical model that satisfies conditions lto3 has an infinite number of 
solutions because there are no restrictions on the highest (two-point, three-point, etc.) PDF. The model developed 
in [36] is only one of many possibilities. Some related problems were considered earlier in [2], [27], [28], and [24].

It is clear from the preceding analysis that statistics on differences in elevation are more important for the 
scattering theory than statistics on elevations. On the other hand, it is clear that if the spectrum of surface 
is anisotropic, that is, if it depends on the angle between the wind direction and the wave-vector direction, we 
can expect that the PDF of differences also may be anisotropic. The experimental data for the PDF of slopes 
[5] [6] support this conclusion. Because of this, we try in this paper to construct a statistical model of the surface 
that satisfies the following conditions: (a) It has the given anisotropic spectrum (or correlation or structure 
functions), (b) It has the given joint PDF of slopes in two principal directions (for the wind-driven surface waves 
these directions are upwind and crosswind.) (c) It is possible to find the explicit analytical formulae for any 
characteristic function for differences of the type (2.7) for any n.

In most publications devoted to non-Gaussian surfaces, the cumulant expansions (Edgeworth or Gram-Charlier 
series) were used. This method is standard for describing non-Gaussian distributions. However, it is known that 
PDF with the final number of cumulants (except Gaussian PDF) does not exist (see, e.g.,[18]). Because of this, the
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truncation of Edgeworth or Gram-Charlier expansions necessarily leads to the appearance of negative probabilities 
(see examples in the paper [12]). These negative probabilities may affect the results of calculations of scattering 
cross sections and violate the energy conservation law.

In describing the non-Gaussian multivariate PDF, we will use decomposition of an arbitrary PDF in the sum 
of an auxiliary multivariate Gaussian PDF (for a single random variable this method is sometimes used in the 
Monte-Carlo simulation of non-Gaussian PDF). This approach replaces the conventional cumulant expansion. 
The method suggested in this paper does not lead to negative probabilities (see Figure 2.1) and, because of its 
simplicity, it successfully replaces the cumulant expansion. The solution obtained is simple enough to (1) perform 
all necessary calculations, and (2) obtain the analytical formulae for joint CF of differences in elevation. It allows 
to obtain the scattering cross section in the Kirchhoff and other approximations for non-Gaussian surfaces with 
the realistic anisotropic spectrum and the PDF of the principal slopes.

The results obtained show that deviations from the Gaussian PDF may be important and may cause differences 
in the scattering cross section in several times.

EXPERIMENT

ELEVATION, cm

Figure 2.1: Non-Gaussian PDF of elevations for the frictional velocity 1.24m/s taken from the paper [12] and its approximation by 
the sum of four Gaussian terms. In contrast to the cumulant expansion, no negative probabilities appear in this representation.

To aid the reader’s understanding of this paper, we will first describe its logical structure. We then consider 
the following problems, each of which can be solved once the preceding problem has been solved:

A. Joint PDF of differences in elevation taken in two principal directions
We start with an examination of joint non-Gaussian PDF W (A1,A2) for two differences in elevation:

Ai (Zi) = C (r+Zimi) - C (r), A2 (h) = C (r+/2m2) - C (r), 
taken in two principal directions: upwind, described by the unit vector mi, and crosswind, described by the unit
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vector m2. The function W (Ai, A2) is approximated by the sum of the two-dimensional Gaussian PDF (3.2) 
having different positions and different matrixes of second moments. The parameters of these auxiliary Gaussian 
PDF are expressed in terms of the (anisotropic) correlation (or structure) function of the surface, which is assumed 
to be known from experimental data. The formula (3.39) for characteristic function (CF) of this non-Gaussian 
PDF thus obtained contains several uncertain numerical parameters: AM, /ci^, and K2fl (the index /x denotes
the different Gaussian terms of decomposition).

B. Joint PDF of two principal slopes
From consideration of the particular case /l5/2 —> 0, it is possible to obtain the joint PDF (4.26) of two principal 

slopes, 71 and 72, in terms of the same uncertain parameters: AM, and k2[1. All these parameters can
be determined from a comparison of the approximate formula (4.26) with the experimental data. After finding 
these parameters we can substitute them in the formula for joint PDF or joint CF of two differences Ai and A2. 
The result is a formula that agrees with the correlation properties of the surface and with the joint PDF of two 
principal slopes.

C. PDF of a single, arbitrary directed, difference in elevations
The next step is to find the PDF and CF of a single, arbitrary directed, difference in elevation,

A(r',r") =C(r')-C(r")

that can be easily expressed in terms of the joint CF of two differences, taken in the principal directions. This CF 
is a superposition of the corresponding Gaussian CF with the same parameters, P^, A^, ac^, and k2[x. A particular 
case of this CF for Zi,/2 —* 0 provides a CF for a slope in an arbitrary direction.

D. Joint PDF of an arbitrary number of arbitrarily directed differences in elevation
The joint PDF V for M arbitrarily directed differences also can be presented in the form of a superposition of 

M-dimensional Gaussian PDF. The coefficients of this superposition do not depend on M. Therefore, we can use 
the same parameters PM, AM, «iM, and k2[1 to construct V. The function P, or the corresponding CF (7.3) obtained 
in this way, describes the random surface with the given anisotropic spectrum (or given structure function) and 
the given joint PDF of two slopes (derivatives of elevation in two principal directions).

E. Scattering cross sections
Scattering cross sections from the absolutely reflecting interface can be obtained for different approximations 

in terms of the obtained CF. Numerical evaluation of the corresponding integrals in the Kirchhoff approximation 
shows that deviation from the Gaussian distribution can be very important and can cause significant difference in 
scattering cross sections, especially in the range of small grazing angles.

F. Universal angular dependence of the 
variance of slope

We show (Appendix A) that only from the symmetry of the spectrum of surface with respect to wind direction 
it follows the universal dependence (A.20) of slope variance (j2 (^)) on the angle ^ with wind direction.

3. Joint PDF for upwind and crosswind differences in elevation

Let us consider the joint PDF for two finite differences, Ai and A2, taken in upwind and crosswind directions:

Ai (h) = C (r+Zimi) - C (r), A2 (l2) = C (r+Z2m2) - C (r), (3.1)

for arbitrary values of h and l2. We assume that the joint PDF for Ax and A2, the function W (Ax, A2), can be 
approximated by the sum of two-dimensional Gaussian surfaces of the general type, (Ax, A2):

A1,A2) =------------ x
2^(71^172^^1 —

exp / — (^1 — _ (A2 — A2>M) 2(Ai — Ai^) (A2 — A2,^) 1
1 2<7i,m(1 ~pI) 2o3iM(l-p») 2<71iM(72)M (1 - pi) J'

(3.2)
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Each Gaussian surface over the plane (Ai, A2) described by the function (3.2) is centered in the point

(Al,#i) A2,^i)

and is characterized by the parameters <7i>#j, (^2,^1 and p^. These parameters are expressed in terms of the mean 
values calculated with the PDF (Ai, A2) (we call them conditional mean values):

(3-3)JJA1iM JJ W„ /j.)=  (Ar, A2) AxdAxdAa = (A, |  ,
(3.4)

1 1 2 2 1 2 2 mA2)M = JJ WA (A ,A )A dA dA  = (A | ),

of ^ =  (Ai, A2) (Ai — A1iM)2 dAidA2 =  (Ax, A2) AjdA^-A2^ = < A?| m)-( Ax| /x)2 , (3.5)JJ JJ
&2  W^(A1,A2)(A2-A2,M)2dAidA2=  (Ax, A2) A|dAidA2 - A^ = ( A||  (A2| )2 ,‘/'/ (3.6) ^ — f f ff p.) - p

o-i;M(T2= Wp (Ai, A2) (Ai — Ai^) (A2 — A2l#1) dAidA2 = ( AiA2| /i) — (Ai| /i) (A2| /i). (3.7)JJ We seek an approximation of the joint PDF of two differences Ai and A2, the function W (Ai, A2), in the
form3 ,__

W(AllA2)«^P^(A1,A2), (3-8)

where PM > 0. Because each function is normalized, the normalization condition for takes the form

(3.9)

Thus, we can consider the positive numbers P^ as some probabilities and the functions (Ai, A2) as conditional 
PDF for fixed //..

Let us consider the joint CF for Ai and A2:

©A (ai,li;a2,h) = (expi [aiAi (h) + ia2A2 (Z2)]) • (3.10)

If we use the approximation (3.8) for W (Ax, A2), we obtain the corresponding approximation for CF: 

©a (ai,Zi; 0:2,12) ~ £P^©a,^ (ai,h',a2,h) =

£ Pfj, exp iai Ai>m + ia2A2ifl ~ \ + 2ai 0:201, (3.11)

Here,

©a,m (cci, Zi; 02) h) — exp iaiAi^ + ia2A2,m - | (ofcr^ + 2a1a2<71|#1cr2,ftftt + <*2^) (3.12)

is a CF corresponding to the conditional Gaussian PDF (3.2).
To determine the unknown coefficients and functions, entering in (3.11) and (3.12), we compare the expansions 

of 0(ai,Zi; £*2,^2) that follow from the definition (3.10) and from the representation (3.11). The expansion of 
(3.10) in powers of oi and 02 has the form:

© (oti,l\\a2,l2) = 1 + ioti (Ai) + ia.2 (A2) — - [o^ (A3) + 20102 (A1A2) + (*2 (A|)] + (3.13)
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Because (() = 0, we obtain (Ai) = (A2) = 0 and

(3.14)0 fa) = 1 ~ 2 [ai (^1) + ^aia2 (Ai A2) + a^ (^2)] + * ‘ * •

The expansion of (3.11) in powers of ai, 0:2 has the form

©A (&l,ll',<X2,fa) ~
E P»\ 1 + + i(*2A2,M - - (a?<r?M + 2aia2<7i,^<x2}flp^ + a$o%ift)

~2 (^^’A4 + 2Q!1Q!2Ai)MA2jM + <*2^2,p) 'f----
(3.15)

From comparison of the zero-order in as terms of expansions (3.14) and (3.15) we obtain the same relation (3.9).
From comparison of the linear in a\ and 0:2 terms we obtain

Epmam = 0, Ep^2,m = o (3.16)
A4 A4

From comparison of the coefficients in front of a\, a$, and a\a2 we obtain:

52 pv +Ai,m] = (Ai) > (3.17)
A4
E (°2,m + A2jMj = (Ag) , (3.18)

A4
[^1,/xCT2,/x/2m + Ai>/xA2>/x] = (A1A2) •

A4
(3.19)

Note that all of the values Ai, A2, A1>M, A2,M, ct^, and pM depend on Zi or fa. If we substitute Ai>/X, 
A2,/x? cri>AX5 ^2,/iJ and P/4 (3.17) to (3.19) in terms of conditional mean values (3.3) to (3.7), we obtain:

^PM<A?ax)|M) = (A?(Zi)>,

A
(3.20)

4
EPE Al(Z2)|/i> = <Al(Z2)>, (3.21)

A4
E (Ax (/1) A2 (Z2)| M) = (Ax (h) A2 (Z2)). (3.22)

A4
We can satisfy all of the equations (3.20) to (3.22) if we set

<A?(Zi)|/i) = AM(A?(Zi)>, (3.23)
( A2 (I2)| n) = Xfj, <A 1(h)), (3.24)
(Ax (Zx) A2 (Z2)| m) = A^ (Ax (Zx) A2 (Z2)>. (3.25)

In other words, all of the conditional second moments of differences are proportional to corresponding known 
unconditional second moments with the same coefficient AM. In this case, all of the equations (3.20) to (3.22), 
formulated in terms of functions of fa, fa, reduce to a single equation with respect to the numbers A^:

YP^ =L (3-26)
A4

Note that in terms of the structure function of the surface,

^(r'-r") = ([C(r/)-C(r")]2), (3.27)

7



the functions (3.23) and (3.24) take the form
(A?(Ii)|a*) = V> (fimi), (3-28)
(A|(/2)|m) = XflD{l2m2). (3-29)

The expression
(Ai (li) A2 (h)) = ([C (r + ^mi) - C (r)] [c (r + hm2) - C (r)])

can be transformed using the Yaglom identity [41]:

{A — B)(C — D) = i [(A - D)2 + (S - C)2 - (A - C)2 - (B - Df (3.30)

as follows: 
(Ai {h) A2 (Z2)) = - [D (Zimi) + D (Z2m2) - D (Ijini - /2m2)]. (3.31)

1

Thus, we can rewrite (3.25) in the form

(Ai (h) A2 (Z2)| m) = ^ P (*imi) + -0 (^m2) - D {hmx - /2m2)]. (3.32)

Let us consider now the equations (3.16). The derivatives of Ai)/Lt (Zi) and A2,/i, with respect to l\ or I2 in the 
points 11 = 0 or I2 =0 are equal to the conditional mean values of slopes. We will find a bit later that these values 
must be non-zero. Because of this we cannot set these functions Ai>/X (Zi) and A2,^ (h) to be zero> in sPite of such 
choice is consistent with (3.16).

The typical value of the difference

Ai,m = ,(C(r+Zimi) -CWI/^)

is on the order of yj(A^ (Zi)). On the other hand, Ai^ as a function of l\ must be an odd function, that is,

AiiM Hi) = -a1>m (ii). (3.33)

Because of this we can seek Ai>m and A2,M in the forrh

lAi)/x (Zi) — (^1 (M) — ^ ^2 ’

MmA2,m (fe) — ^2,/xTy^\/(A2 (^2)) — K2,nh\ j2

(3.34)

Note that if h -> 0, the function (A? (Zi)) is proportional to l\ and

yj(Af (Zi)) /Zf ~ Constant.

Thus, the function Ai>/X (Zi) is proportional to Zi for small Zi, i.e., it has a continuous derivative in the point Zi = 0.
After substituting (3.34) in the equations (3.16) they reduce to the equations with respect to the numbers 

and K2^\
Yp= °>Y = °- (3-35)

II n
We expressed all the functions

Ai^,A2i#i,(Af {h)\n) ,(A%(l2)\tj) , and (Ai (h) A2 (Z2)| (i)

in terms of the known structure function D (r' - r") of the surface and the unknown numbers AM, and k2;M. 
If we substitute the formulae obtained in expressions (3.5) to (3.7), we obtain

= < A?| - (Ar| /x)2 = (A„ - D {hmx), (3.36)

8



(3.37)a2,n = (A||/x) - (A2| M)2 = ~ K2,M) D (!2m2) >

^1 ,nV2,nPn - (AiA2\h) - (Ai|/i) (A2|m) =
Y [-D (limi) + £> (/2m2) - D (lum - Z2m2)] - (^mi)^,(^m2)

For the joint CF of the differences in the elevation of surface, substituting (3.36) to (3.38) in (3.11) we obtain:

©A (oti,li,a2,h) = (exp {iai A: (L) + ia2A2 (Z2)})

Xexp i* , jD(miZi) , ,
^l^i,fin\l-----^------ h OL2^2,iih\

D (m2Z2) 

Z2
\ (\* - «?,„) af£> (mill) - 5 (Am - Kl>tl) a22D (m2Z2)
2

-cqa^ -y [-D (limi) + D (Z2m2) - D (limi - Z2m2)] -

~K1,HK2,fihh
ID (limi) D (Z2m2)

1112,

(3.39)

Formula (3.39) does not contain any unknown functions, but only unknown numerical parameters PM, AM, 
and k2jM. To find these parameters, we consider the particular case of (3.39) while l\,l2 —> 0. In this case we 
obtain from CF for differences the CF for derivatives of these differences, i.e., for the slopes of the surface.

4. Matching with the PDF for slopes

The slope of a surface in a point r taken in a direction determined by the unit vector n is given by the formula

7(n,r) =nVC(r). (4.1)

We assume that the spectrum of surface (q) is symmetrical with respect to the wind direction determined by
the unit vector mi. If we choose the x-axis along the vector mi, we obtain

mi=(l,0). (4.2)

The vector q can be presented in the form

q = (q cos <p, q sin ip), (4.3)

where ip is the angle between q and the wind direction. The symmetry of the spectrum with respect to the wind 
direction means that

= $(g,-v?)- (4.4)
The structure function of the surface,

Z?(r'-r") = ([C(r')-C(r")]2), (4.5)

in terms of the spectrum has the form (compare with (1.2)):

D (r, ip) =2 JJ [1 - cos (qr)] $ (q, ip) qdqdip. 
(4.6)

Let us consider in (3.39) the case li,l2 —> 0 and substitute

Ai = C (r+iimi) - C (r) -+ ZiimVC (r) = Z171 (r) 
A2 = C (r+Z2m2) - C (r) -+ l2m2 VC (r) = l2y2 (r).

9



Here,
7i (r) = mi VC (r), 72 (r) = m2 VC (r) (4.8)

are the slopes of the surface at the point r, taken in the upwind direction mi and in the crosswind direction m2. 
We obtain:

2©A (ai,Zi;a2,Z2) —► (exp {i (aiZi) 71 (r) +i(o2Z2)72 (r)}) = 07 (aiZx, a l2). (4.9)

If we denote
Pi = cq/i, P2 = ®2h, (4-10)

and consider the case h,Z2 —> 0, /?i,/?2 = Constant, we obtain the relation between 0a and 07:

07(/?1>/?2) = iiihno0A (^,1 (4.11)

According to the definitions of slopes,

.. D(lxmi) , 2\ ,• D{l2ra2) , 2N (4.12)

Therefore, the following limiting formulae are true for the values entering in (3.39):

(4.13)

The term
D (Zxmx) + D (Z2m2) - £> (mxZx - m2Z2) = 2 (Ax (Zx) A2 (Z2)), 

following the product OxO;2 in (3.39), needs more attention. Using spectral representation (4.6), we find

(AxA2) = 2 — cos (qmxZx) — cos (qm2Z2) + cos (qinjli — qm2Z2)} (4-14)JJ^(q)d q{l 
But

{...} = ism sail si„ as* eo, siViiaa!?,

and

(A, A,) = 4  «(q) sin 32lli sin 52^2 cos
(4.15)JJ

For l\,^2 —* 0 we obtain

4sin 3E2iil sin S!^2 cos _ hh (qmi) (qm2)

and

r <AiA2> / \<.5s.»_vr=<T,72>=
r p pOO pTTjj $ (q) (qm^ (qm2) d2q = J q3dq J $ (q, p) sin p cos pdp — 0

because of <3> (q,p) = $ (q, —p) (the integrand is an odd function with respect to p). Thus, we proved that the 
term (AxA2) >0 while Zx,Z2-»0,

hh
or D (Zxmx) + D (Z2m2) - D (mxZx - m2Z2)

h,l2->0 hh = 0, (4.16)
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vanishes while I1J2 —* 0- This relation also can be written in the form

(7172) = 0. (4.17)

It follows from (4.17) that two principal slopes in the same point on a surface are uncorrelated (it is shown in 
Appendix A that this relation follows only from the symmetry of spectrum with respect to wind direction).

Thus, using (4.11), (4.12), (4.13), (4.13), and (4.16), we obtain from (3.39):

©7 (Pi. Pi) = (exp {ifii7i (r) + »/?272 (r)}) « 
P» exp {ipiKltli v^) +102*2,n -

-f (V - *?,„) «> - f (K - 4J (yi) (4.18)

+fil02K1'MK2,tty/(y?) (72>

It is easy to verify by direct differentiation of the right-hand side of (4.18) that

a2e7 (A,/?,)
dpi dfc 01=02=0

(7172) = 0 (4.19)

for any values of the parameters. The mean value of the slope (",]),

1 8Q1 (Pufo) 
(7l) - 7 —m— =(32 =0

(4.20)

because of (3.35). The similar formula is true for 72. Thus, the principal slopes 71 and 72 are statistically 
dependent, but uncorrelated.5 

The CF of the marginal PDF,

wi (7i) =  W7 (71,72)^72, (4.21)J
can be obtained from (4.18) if we set fc = 0. We obtain

'©7i (Pi) = (exP (iPili)) = ^PMexp|i/31KliMy/,(^f) - (am - K2 J (72) j. (4.22)

The corresponding marginal PDF is given by the formula

W7(yi ) = J2
(Am - /t?^) (7? : exp <

7i “ «if 4\/R)] 2

(7i2) . (4.23)

Similarly,

^7(72)-^
7 (A„ - 4>fl) (7|) exp <

72-^vTi)

2(A#i-/c2J (7f) (4.24)

It follows from (4.18) that the conditional Gaussian distribution, marked by subscript /r, has the following 
parameters:

<7i|/r) = Ki^^f), <721//> = «2,#iy/(i|)
(4.25)

^l.M (A#4 K1,/x) (7?) 1 CT72)^ — (A^ - «2,m) (72) , <r7li#i<T72iMpM = —KiiflK2,n\J(yf) (7;

- 2 _ — ^1,/x ~ ^2,/x)
1» 1 PfiP» = - \](Af» ki,m) (A/x — K2jft) (A^ ki,m) (Am _ k2,m)
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oi,n°2,r (! - pI) = <7l) <72) am (K - K1,M - k2,m) • 

The PDF that corresponds to CF (4.18), is given by the formula
W-y (7l,72) -

E
2tt(Am - k\iIM - k|iM) (7?) (72)

(V -

exp< -
(AM - «2)/x) [71 - Ki^vTyi)

72 ^1,11^2,11

2 (7?) A„ (Am - - K^)

71 - k1,ma/(7i)] [72 - K2>A1VTii)
(4.26)

2 (72) "V (Ajx K1,M K2,/j) \/{7?) (72)^ (\» Kl,n K2,^) J
If we integrate (4.26) over 72 or 71, we correspondingly obtain (4.23) or (4.24).

Because the values <rj ^, cr^ ^, and 1 — must be non-negative, we obtain the following restrictions for the 
parameters AM, ki)M, and K2jM:

,2 -----------1,2; A„-kL-«L>0. (4.27)A^i - «£)#t > 0, a

5. Finding the parameters λµ, κµ, and Pµ.

The next step in our consideration is to find parameters Ap, km, and PM. If the function Wy (71,72) is known 
(for example, from the experimental data), we can approximate this function by the formula (4.26) (see footnote 
3 after the formula (3.7)). It follows from the statistical symmetry of slopes with respect to wind direction that 
distribution in the crosswind direction must be symmetrical, i.e.,

W-y (71,72) = W7 (71, —72) • (5-1)

A similar condition must hold for the marginal PDF Wy (72):
Wy (72) = Wy (-72) ■ (5-2)

The top of each conditional Gaussian PDF numbered by the subscript fi has on the plane (71,72) the coordinates

(ki-mV^). • (5-3)

It follows from the formula (4.24) and the symmetry condition (5.2) that each point numbered by ju, and hav
ing coordinates (5.3), must be accompanied by the dissymmetric point, numbered by some ft', and having the 
coordinates ___ ___ ___ ___

ki,A\/(7!) = 'Cl^V^7i)’ K2,M'V(72) =-K2,My(72>» (5-4)

and the same values of P^ — P^ and = AM. It is convenient to numerate this point by = -p. In this case,6

k= ^2,—fj. = K2,m; Pi = A^ — X-fj,. (5.5)

Therefore, we must approximate the experimental joint PDF of two principal slopes by the formula (4.26) with 
the additional conditions

y^ -P/x — I? Pn > O5 y^ =0, y>A, — 1
^ [i v v (5*6)

P—fi — P/ii = ^1/x = ^1,/X) ^2,—/x ^2,/X) A^ ^ «1>/X “f" ^2,fi'

The quantities (7^) and (7!) are known from the known joint experimental PDF VF7 (71,72)- Therefore, only the 
numbers k2,/x, A^, and are the subject of finding. Note that, in general, the conditional 2-D Gaussian 
PDF is characterized by five independent parameters: two shifts and three coefficients of the quadratic form. In 
our case, only three independent parameters /c1>/x, Am remain; the two other coefficients of the quadratic form 
are some functions of kijAO ^2,^5 A^.

The procedure of approximation can be performed by minimization of the integrated squared difference between 
the given joint PDF and its approximation by the formula (4.26). In the process of approximation we find all the 
numerical parameters PM, k1)M, k^/x, and (see the example in the section “Numerical results...”).7
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6. The CF for the arbitrary directed difference ζ (r') — ζ (r")

We have already obtained the formula (3.39) for the joint CF of two differences, taken in the two perpendicular 
principal directions. In this section we generalize this formula for the arbitrary directed difference of the type

A(r',r")-C(r')-C(0. (6.1)

It is easy to formulate the problem of finding the CF for such differences in terms of the solved problem. Let 
us draw through the point r' a straight line in the direction of the vector mi (the upwind direction) and draw 
through the point r" a straight line in the direction of the vector m2 (the crosswind direction). These two lines 
intersect at some point r, depending on r' and r". This point is determined by the equations

r = r' + m^i = r" - m2/2- (6.2)

If we multiply (6.2) by the vector mi and take into account that

m] = ml = 1, mim2 = 0, (6.3)

we obtain
r'mi -Mi = r"mi, li = Zx (r', r") = (r" - r') mx = x" — x'. (6.4)

Similarly, multiplying (6.2) by the vector m2, we obtain

r'm2 = r"m2 - Z2, h = h (r', r") = (r" - r') m2 = y" - y'. (6.5)

Thus, we obtain for r two equivalent formulae8

r = r (r', r") — r' + [(r" - r') • mi] mi = r" - [(r" - r') • m2] m2. (6.6)

In coordinate form,
(6.7)i-'= (*',</), r" = (*",*"), r = (*",„')

We can present the difference £ (r') — £ (r") as follows:

£(r')-£(r")=A(r',r")= (6.8)
[C (r') - C (r (r', r"))] - [C (r") - < (r (r', r"))] = A, (h (r', r")) - A2 (Z2 (r', r")).

Thus, for the CF of A (r', r") we obtain

@A (a) = (exp {ia A (r', r")}) = (6.9)
(exp {iaAj (h (rr")) - iaA2 (l2 (rr"))}) = 0A (a, h; -a, l2),

where 0A (a, lx; -a, l2) is given by the formula (3.39). Substitution of (3.39) in (6.9) leads to the formula

0A (a) = (exp {ia [C (r') - C (r")]}) ~exp{iaC - a2Q} , (6.10)

where

£ = (r',r") lU r'.r") -*2,^2 (r', r")
/ ID (m2/2 (r',r"))

l22 (r',r") (6.11)

and
Q = \ {K ~ D (mjli (r', r")) + (A^ - k^) D (m2/2 (r', r")) -

- ^ [D (mih (r', r")) + D (m2l2 (rr")) + D (mxh (r', r") - m2Z2 (r', r")) ‘

r, r, I, fr' r"U fr' r"l lD (mi/l (r'’D t™2*2 r"))
Kl’^h (r ’1r } h (r *r ) V q (r', r") Z| (r', r")---------

+ (6.12)
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After cancelation of several terms following the factor a2A/x, we obtain 

©a («) = (exp {ia [< (r') - £ O'")]})
(6.13)f 1 a2£2)

y, exp < iaC - -a2X^D (m^i (r', r") - m2Z2 (r'> r")) d---- ) •

It is easy to show that the vector

mill (r', r") - m2l2 (r', r") = (r - r') + (r - r") = (x" -x',y' - y")

is dissymmetric to the vector r" - r' with respect to the direction of ni! (i.e., to the wind direction). Because 
we assumed the symmetry of the spectrum (and the structure function) with respect to wind direction, we obtain 
from this symmetry:

D (mih (r', r") - m2h (r', r")) = D (r" - r'). (6-14)

Thus, we can simplify formula (6.13) and write

©A (<*) = (exp {ia [£ (r') - £ (r")]}> ~
T, Pn exp jia£-|a2 [X^D (r" - r') - £2] |. (6.15)

It follows from (6.15) that the coefficient following the factor a in the exponent presents the conditional mean 
value of C (r') — C (r//):

<[C(r')-C(r")]|M>=£ =

(6.16)
D(mih(T>,r")) /D(m2Z2(r',r"))

^l(r’r }y q (r'.r'O-------^2(r’r }y 1% (r', r") ’

and the coefficient following the factor a2 /2 presents the conditional variance of the same difference:

([C (r') - £ (r")]2| /*) - ([C (r') - C (r")]| m)2 = A,D (r" - r') - C? > 0. (6.17)

Prom comparison of (6.17) and (6.16) it follows that

([C (r0 - C (r")]2| v) = X,D (r" - r'). (6.18)

This result extends (3.28), (3.29) to an arbitrary directed argument of the conditional structure function.

6.1. The CF for an arbitrary directed slope

Let us set in (6.15)
(6.19)

and consider the case \p\ —» 0. For the difference ((r') — ((r") we obtain:

£ (r') - C (r") « pV£ (r) H---- = P7 (r) H----- . (6.20)

Because in the chosen coordinate system we have

P = (!i,h) and 7 = (71,72)

, we can also write
£ (r') - C (r") = Z171 + I2I2 H---- • (6.21)

14



For the values entering in (6.15) for l\ —> 0, I2 —^► 0 we obtain

Z?(mili (r', r")) , 2* P(m2l2 (r',r")) , 2>
Z?(r',r") V7l/’ Zf(r',r") '72/ (6.22)

and (because (7172) = 0),
D (r" - r') -> ([Zi7i + Z272]2) = <7i) + <72> • (6.23)

Thus, for 11 —► 0, I2 —> 0 we can write denoting

•4 (<*,/?) =z , (6.24)

(exp [ia (Z171 + Z272)]) = 07 (ap) «
^P/xexp|ia^(Z1,Z2)- [zi <7i) + *2 <72>] -A2(h,l2) (6.25)

The function 07 (ap) really depends on the product ap = /3 = (ali^afe):

(exp [i/37 (r)]) s= 07 (/3) «
PMexp IU(/?ifA)-l{AM [/3? <7?) + /?| <72>] - -42 (/?i,P2) 11• (6.26)

We can present (6.26) in another form, if we set

Pi = p cos ip, /32 = P sin ip, (6.27)

where ip is the angle with respect to wind direction. In this case,

71 cos ip + 72 sin ip = 7 (ip) (6.28)

is the slope in ^-direction and

0i <7i) + 02 (72) = 02 [cos2 ip <72) + sin2 ip (7I)] = p2 <72 (ip)) . (6.29)

(The last equality is true because of (7172) = 0). We emphasize that formula (6.29) describes the dependence of 
the rms. of slope on the direction. This dependence is universal; it follows only from the symmetry of spectrum 
with respect to wind direction and does not depend on PDF (see Appendix A for a derivation of (6.29) that is 
based only on the symmetry of spectrum).

The scalar product /37 (r) takes the form

01 (r) = 0ih + 02j2 = P [71cos V’ + 72 sin ip] = /?7 (ip). (6.30)

Substituting (6.27) - (6.30) in (6.26), we obtain:

(exp [ipj (i>)]) = QlW (P) « ^2 P^ exp ipA(ip) Xu <72 (V»)> - -A2 WO} (6.31)

where
A(ip)= A (cos ip, sin ip) = k1)#1 x/(7i) cos ip - k2,m sin ip. (6.32)
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7. Multivariate PDF for differences ζ (r') - ζ (r")

For many problems it is necessary to know the joint CF for several differences of the type

Ax (ri, r?) = C (ri) ~ C W),.... An (r^, r") = C (O - C (r"). (7.1)

For example, such CF’s appear in the theory of wave scattering from rough surfaces; they contain all the information 
necessary to calculat the scattering cross sections.

We seek this CF,
@A = (exp (7.2)

in the form

(7.3)

n 1 n
j ai {At (r(, r")| n) - - ^ Bik (r(,r";r'fc,r'fcV)aiafc

i=l i,k=1

{

with the same values PM, and that have already been determined. Here,
(7.4)

Pifc(r',r";r'fc,r'fcV) = (A, (r',r") Afe (r'fc,r£)| M> - (A, (r',r")| m) (Afc (r'fc,r")| •

Using the Yaglom identity (3.30), we obtain:

(Ai (r(,if)A j (r'-, r") | fi) =
( fc «)-<«')] [c «)-<«)] I /*) =

“{ ( [<«) - < «)]2| «) + ([< W) - < «)]2| m) -

- ( [c(rj) - < (r))]2|,.) - ( [c Or?) - C (r?) ]2| «) }

(7.5)

But for the arbitrary directed, conditional, mean value and structure function we have already obtained for
mulae (6.16) and (6.18):

<[<(r')-C(r")]|M> = (A(r',r")|/r) = P(r',r"), (7.6)
([C(rO-<(r")]2|M) = VD(r"-r') (7.7)

where, according to (6.4) and (6.5),

h (r/,rw) = (r//-r,)m1=a h (T', r") = (r" — r') m2 = y" — y', (7.8)

(i.e., the arguments of the anisotropic structure functions in (7.6) are the upwind and the crosswind components 
of the vector r" — r').

Substituting (7.7) in (7.5), we obtain

(Ai (r(,r") Aj (r',r")|/x) =(r' - r") + D (rj - r?) -D( r' - r') - D (r? - r?) J,
(7.9)

and the formula (7.4) for Bij (r^, r"; r'-, takes the form

Bij (r',r";r',r"|/i) =
^ [a (r' - r”) + D (r' - r?) - B (r( — g) - £> (r» - r?)] - 

£(r',r")£(r',r").

(7.10)
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Formula (7.3) where

is determined by (7.6),
Bij (r',r";r',r"|/i)

is determined by (7.10), and
h (r',r"),/2(r',r")

(A; (r'i>r")lM)

are determined by (7.8), presents the joint multivariate CF for several, arbitrarily directed, differences in elevation.

8. Scattering cross section from the absolutely reflecting interface in the Kirchhoff 
approximation

For the scattering cross section E (q, q0) for both the Dirichlet and Neuman cases (in the Kirchhoff approximation 
these two cases coincide), we have (see, e.g., [37]):

£ (q, qo) = 471-2 k2 + wo - qq0 l2 (l*7(q- qo^ + ^o)!2) • (8.1)

v Here, the wave-vector of the incident plane wave ko=+ v0 (qo, — vq) has the horizontal component qo and the vertical 
component uq = yjk2 — qg, and the wave-vector of the scattered wave has the form k = (q,i/), where v = yjk2 — q2. 
The value is given by the formula

(8.2)

(l J (q-qo.^ + ^o)|2) =

/f d2r' JJ ^r" exp ^ ~ ^ ^ + * + K (r')~ ^ (r")]]

The mean value, appearing in this formula:

(exp {* (v + mo) [C (r') - C (r")]}>,

is the CF for the differences in elevation that can be expressed in terms of (6.15):

(exp {* (m + M0) [C (r7) - C (r")]}> «
E pn exp |* (m + m0) C (r7, r") - 1 (m + m0)2 |X^D (r" - r7) - [C (r7, r77)]2 j j. (8.3)

Here, 
r7 = (x7, y'), r" = (x77,y"), h = x" - x7, l2 = y" - y', r77 - r7 = (h,l2) , (8.4)

and
mill (r7,r77) = (Zi, 0), m2l2(r7,r77) = (0,/2) • (8.5)

For (8.2) we obtain, choosing 
r7 and r77 — r7 = r = (h,l2)

as a new variables of integration:

(l J (q-qo.^ + ^o)!2) =

1^4 Ep^ //^r‘' jdtl Jdl2exp [* “ fto) 11 + i (92 - 920) h] X

exp < i (m + m0) £ (l\, l2)
\ (m + M0)2 |

(8.6)

^pD(li ,l2) — £{h,h)
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where we denoted the value C depending on new variables li and I2 as C (Zi, Z2):

rn i\ = * 1 RJhS , \D^M)
£(Zi,Z2)— Kl,nh\l j2 i2

(8.7)

Taking into account that

Jl‘fr,=A
where A —* oo is the total scattering area, we obtain

■j (|J7(q-qo>l' + I/o)|2) =

1b^I cLli J dl2 exp (qi - qio) h + i(q2~ Q2o) h + * (y + ^0) £ (Zi, I2) —
(v + v0f jX^D (hM) - [c {h,l2) 2 >1

(8.8)

For the scattering cross section from the unit of area, So = S/ A, we obtain

So (q, qo) =
k2 + w0 - qq0

27r (v + vq) S r*J dli J dZ2 exp [i (q\ — qio) l\+i (#2 — #20) h] x

exp {v + vo)C{l\,h) ~ ^ {y + ^o)2 j'V-DC/ijk) — £(h,h) ||

(8.9)

The function D (r) saturates while r -> oo, and D (oo) = 2erg, where = (C2) is the rms. of the surface 
elevations. Because of this, it is useful to separate the singular integrals in (8.9).

Let us denote F(hM) = \(y + "o)2 { VD(h,h) - [sGi,h)]}• (8.10)

In terms of T (I1J2) formula (8.9) takes the form

So (q, qo) =
k2 + w0 — qq0 1 2

27r {y + vo)
^ P^jl j dl\ / dl2 exp |i [(qi — qio) h + (q2 ~ <720) h\ +i{y + vq) C (/1, Z2) j exp [-T (I1J2)]
^ d J

(8.11)

We present exp [-T(Zi, Z2)] in the form

exp [-T(Zi, Z2)] = -4 (Zi, Z2) + B (Zi, Z2), (8.12)

where
A (Zi, Z2) = exp [—J7(Zi, Z2)] — exp \—T(Zi, 00)] — exp [—T(00, Z2)] + exp [—J*7(00,00)] (8.13)

and
B (Zi, Z2) = exp [—J7(Zi, 00)] -f exp [—.T7(00, Z2)] — exp [-P(00,00)]. (8.14)

The function A (Zi, Z2) satisfies the conditions

A (00, Z2) = A (Zi, 00) = ^4 (00,00) = 0. (8.15)
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Thus, if we substitute in (8.11) the sum (8.12) instead of exp(—F), the term containing A will converge. The 
second term containing B leads to sum of ^-functions and contributes only to the specular directions. Thus, the 
diffuse part of the scattering cross section is given by the formula

So-
k2 + w0 - qqo n 2

27r (V -f Vo) fX J J
dl2 exp [i (qi - gi0) h + i(q2~ 920) h] A (l\,h) ■ (8.16)

Prom (8.10) we obtain

F(l1,±oo) = -(v + v0) {2X^0
h T \jD (Ji, 0) K2
l‘ll

,n°oV2 | (8.17)

JF(±oo,12) = ^(i' + i'o)2 j2A^ - ±Klitla0V2 - K2}tij^^/D(0j2) j (8.18) 

T(±cx), ±oo') = (v + vq)2 X/j. - (±Khtl - (±') k2>m)2 o-o- (8.19)

These formulae were used in our numerical calculations6.

8.1. Geometric optics limit

The geometric optics (GO) limit corresponds to the expansion of the function

F (Ihh) =i(y 4- is0) C (Zi, I2) — J7 (I1J2)

in powers of l\ and Z2 and keeping in this expansion the terms up to the second order. Because l\ and Z2 correspond 
to the principal directions, the cross-term ZiZ2 does not appear in this expansion. Using (6.23), we obtain

D (Zx, Z2) = a\l\ 4" &2Z2 "h O (Z4) .

It follows from (4.12) that a\ = (7^) and a2 = (7!):

D(h,l2) — (71) l\ + {ll) % + O (l4). (8.20)

Thus, the expansion of the function F after combining similar terms has the form 

F (h, h) ~ To (h, h) = i (v + v0) \/(7i) ~ K2,Mk \J(ll)] ~

\ iy + ^o)2 | (Xfj. - k?iM) (7?) l\ + (Am - kU (7I) ll + 2/ci,mk2,m\/(7i) (8.21)

Let us compare the formula (8.21) with the formula (6.25) for the joint CF of two principal slopes. This CF 
has the form

(exp \icx{l\71 “b Z272)]) ©71,72 (ctZi,ctZ2) ~ ^ 71,72 (ctZi,c*Z2)

where ©m;7i,72 (ctZi,aZ2) is the conditional CF:

©/x;7i,72 (cfcZi, al2) =

exp < 1a Ji -FW) - «2,ph \/(oi>

[l2! <7l2) + ^2 (722)] - «l,^l\/(7l) -«2,Mi2\/(9|)]
(8.22)

6The additional restriction for the parameters A^, and k,2^ appears from (8.19): AM > 4: «2/z)2 • This restriction differs
from (4.27).
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From comparison of (8.21) and (8.22) we see that

(8.23)exp [F0 (h, h)] = + ^o) k, {v + r'o) k) ■

Let us substitute (8.23) in (8.11). We obtain:

'fc2 + w0 - qqo"12
S0 = dl 2X„ , , yp, f dk /<

27t(i/ + i/0) \ ^ J Jt1exp [i (^i - <?io) h + i (92 — 920) h] 0^71.72 ((^ + ^0) (^ + "0) k) ■
(8.24)

If we change the variables of integration according to the formulae

(y + r'o) k — P\i iy + v0) l2 — P2I dlidl2 =
dpjdfh
(v + ^0) 2 ’

we obtain:
Eo=(t2+,7~q^—Ep» [d»' f (A.A) X

47T2 (1/ + z^o) „ ^ */
exp

.qi - Qio a ,
1----------pi 4-1v + *4)

.92 - 920 ft

(8.25)

But, according to definition,

 exp (—i/?i7i - j/?272) 0p;7i,72 (/5i, ^2) d(3id(32 = WM>7l)72 (71,72) 
(8.26)JJ

is the joint conditional PDF of two principal slopes. Thus, (8.25) takes the form

^ (/c2 + 1^0 - qq0)2 ■sT' D /9io ~ 9i 920 - 92
E»- (^77 V' U+«>' -+D (8.27)

The sum on the right-hand side is equal to the initial joint PDF of two principal slopes. Thus we can finally write 
the formula

So
_ (fc2 + wp - qq0)' 

{y + ^o)4 W.71.72
9io ~ 9i 920 ~ 92 
v + Vo ’ v + vo

(8.28)

The function WM>71>72 (71,72) was obtained above (see (4.26)):

W7 (71,72) =

£
7i - «i

M 27r^A„ (Am - K?t/i - (7?) (72)

(Am - K2,^) 72 - «2,MVT>iy] K1,MK2, 

2 (72) V (V -

j ('V ~ K2,fi)
exp j 2 <7?) v (am -

,y.VW)\

7i ~ «1,
i\/<7i)] [72-^7^)

\/(7i> (72)K (K - ki,m - K2, J

8.2. General approach to geometric optics approximation

We show in this subsection that the formula (8.28) obtained by using decomposition of the PDF in the sum of 
Gaussian terms has a universal meaning (this is a well-known fact; we include the following derivation only for 
completeness of the paper). We start with the formula

s (q, q0) = 4tt2 k2 + Wq - qq01‘ v

v + Vo J
(U(q-q0.I' + l'o)|2)
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where

(|J(q-q0.i' + *'o)|2) = ^4  <*V JJ JJ <Pr"x
[i {i (v v0)In GO limit we expand theexp dif  (qfer ence- q0 )C (r' (r' )-  —r") C ]( r//(exp) as  follows: +  [C (r') - < (r")]}) •

r' = r+|; r" = r-|; C (?) = C (r) + f VC (r); C (r") = C (r) - f VC (r);

C (r') - C (r") = pVC (r) = py,
(8.29)

where 7 = VC (r). Then,

(\J(q - q0.v + "o)l2) = —^4 JJ d?r JJd2PexP[* (q - qo) p\ (exP {* (" + uo) pi}) = (8.30)

Y^4 JJ <Pp exp [i (q - q0) p] (exp {i (v + v0) py}) ,
where A is the total scattering area. For the last exponential we have:

(exp {v + py}) =  exp (v + v0) py} W7 (7) d27, 
(8.31){i v0) JJ {i 

and substituting (8.31) in (8.30) we obtain:

(l J (q-qo^ + ^o)!2) =

J/d?pexp [i (q - q0) p\ JJ exp {i (v + v0) py} W7 (7) (Py = 

jj W7 (7) JJ <Ppexp [i (q - qo + (v + v0) 7) p] ■

(8.32)

Because the last integral over p presents the 2-D 5-function, we obtain using the known formula <52 (ax) = 
|a|-2<52(x):

(|C7'(q-q0,i/ + *'o)|2) =
47T2 (v + V0)#7 qo-q

J' + Z'O

Thus,

v, _{k2+ uv0 - qqo)‘
^Ojgeom — . . a VV. ,4 (8.33)

(^ + ^0) \vo + vj
According to this formula, in GO limit the scattering cross section is proportional to the PDF of slopes of surface 
satisfying the specular reflection condition. This result has a simple physical meaning: the scattering cross section 
is proportional to the number of surface facets having the appropriate slope.

9. Numerical results for the radar cross section for Cox-Munk PDF 
and 2-D anisotropic spectra

9.1. Determining the parameters of the PDF

We now consider an example, the joint PDF of slopes, taken from papers [5] and [6] for the wind speed ui0 = 
10m/sec. We seek the parameters of approximation, A^, and by minimizing the integrated square
of the difference between Cox and Munk function Wqm (71,72) and its approximation W1 (71,72), given by the 
formula (4.26):

 = [WC  ( , ) - Wy ( ,  ^ x^ .E2 m 71 72 71 72)]2 7 72JJ 
We used the N. Metropolis (’’Simulated Annealing”) minimization algorithm for searching the global minimum
[22]. The parameters, obtained for this example, are presented in the following tables:
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Table 1. Parameters of approximation of the Cox-Munk joint PDF for slopes for u = 10m/s
Am

±1 0.2219658 1.1135315 -0.04151202 ±0.4965694
±2 0.2058264 0.6431118 +0.01032697 ±0.3410244
±3 0.0722078 1.5560527 -0.09817264 ±0.7710721

The difference between the joint PDF WCu (71,72) [5] and the approximation (71,72), given by (4.26), is 
presented in Figure 9.1. The relative accuracy of this approximation,

6 =
Jj [WcM (71,72) - W7 (71,72)]2 ^71^72

JJ W?j (71,72) ^71^72

is about 7.7 %.7

COX-MUNK CROSSWIND 
CROSSWIND ERROR 
COX-MUNK UPWIND 

UPWIND ERROR

SLOPE

Figure 9.1: Approximation of the Cox-Munk upwind and crosswind PDF for the wind-speed U\q = 10m • S-* and errors of 
approximations. Real approximation was performed for 2-d PDF, but to make the results clearer we presented only two cross sections 
of the 2-d PDF.

Similar measurements made with a scanning laser slope gauge were published in [3] and [30].
In applications not only the PDF is important but also the spectrum, or correlation (structure) function. In 

our previous paper [36] we used the generalized experimental spectrum of surface presented in Apel’s paper [1]. 
But this spectrum does not agree with the PDF of slopes based on Cox and Munk data. [5]

7We choose such normalization that the ratio is dimensionless.
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According to (4.12), the values (71), (72) can be expressed in terms of D (r) by the formulae

(9.1)/ 2\ r D(hmi) / 2\ ,• D(l2m2)
<7' > = So —if—' ^ > = So —if— '

Substituting the spectral representation (4.6),

D(r,ip) = 2 JJ [1 - cos (qr)] $ (q, tp) qdqdip,
we find

J qdq J [1 - cos (ql cos ip)\ $ (q, ip)

0 0
Because

-. 2 r , , X1 .. 2 _ . 9 f ql cos <p\hm p l1 - cos (9Z cos p)\ = hm ^ • 2 sinJ I—-— 1 = g2 cos2 tp

we obtain:
oo 2tx

f Wi (71) 7i^7i = (7?) = J q3dq J $ (q,<p) COS2 ipdip.

0 0
(9.2)

Similarly,
co 2nJ w2 (72) 72^72 = (72) = J q3dq J $ (?) v) sin2 pdip.

(9.3)

If we find the values (72) and (7I) from the Cox and Munk data (the integrals on the left-hand sides of (9.2) 
and (9.3)), we obtain significant differences from the values calculated via the integrals on the right-hand sides of 
(9.2) and (9.3).8 In the paper of Elfouhaily et al. [9] this controversy was resolved by incorporating the slope data 
in the spectrum. Because of this, we used in our calculations the generalized spectrum suggested in [9].9

9.2. Calculations of the radar cross sections in the Kirchhoff approximation

We used the formula (8.16) for calculations of the scattering cross sections. The functions entering in (8.16) are 
determined by the formulae (8.10) (for F(Z,, Z2)), (8.13) (for A), (8.17-8.18) (the values of F(h,±oo), F(±oo, l2), 
and T(±00, ±oo'))) and (A.8) (for structure function of elevations D (r, ip)). The function D (r, ip) was calculated 
by the formula (A.8) on the basis of the spectrum published in [9]. Special attention was paid to such approximation 
of the function D (r, xp), which provides the correct value of the second derivatives in the point r = 0 (the correct 
values of (y2) and (j2)). In this case the results of the Kirchhoff approximation match with the limiting case of 
GO approximation that is given by the formula (8.33).

In Figure 9.2 we present the results of calculations of the radar cross section as a function of the grazing 
incident angle 6 for different values of k. We used the anisotropic 2-D spectrum of wind-driven waves taken from
[9] for the wind speed u = 10m • s-1 and the Cox-Munk PDF of slopes for the same wind speed.

To estimate how the Cox-Munk PDF influences the scattering cross section, we performed the calculations for 
the same anisotropic spectrum of surface waves but used the Gaussian PDF of slopes. The results are presented 
in Figure 9.3. To eliminate the possible influence of computational errors on the results in the region of small 
grazing angles, we present the results for the limiting case of GO approximation k = 00 when we can use analytical 
formula (8.33).

The same result is presented in the Figure 9.4 in the logarithmic scale where the ratio of the Cox-Munk and 
the Gaussian cases is clearer in the region of small grazing angles.

Similar results were obtained for the finite values of wavenumber. In Figure 9.5 we present the angular 
dependence of the radar cross section for k = 30cm-1 for the Cox-Munk and the Gaussian PDF of slopes.

sThe necessity to match the PDF of slopes and the spectrum was noted in paper [26].
9We are grateful to the authors of [9] who supplied us with the program for numerically calculating the spectrum.
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Figure 9.2: Backscattering cross section as a function of the grazing incident angle 0 for different values of k.

In Figure 9.6 we present the radar cross section as a function of azimuthal angle. Both the anisotropy of 
the spectrum and anisotropy of the PDF affect this angular dependence in the case of the finite k (i.e., in the 
Kirchhoff approximation). The difference between the curves corresponding to the Cox-Munk and the Gaussian 
PDF is caused by the anisotropy of PDF. In the case of GO limit, only the anisotropy of the PDF is important.

Experimental data on the azimuthal dependence of the radar cross section (see, e.g., [17], [31], [21]) are in 
qualitative agreement with the results presented in 9.6.10

10. Conclusions

10.1. Comparison with other methods of statistical description of sea surface

There are several different approaches to the problem of statistical description of sea surfaces. All of these 
approaches are based on the general theory of random functions (see, e.g., [41], [25], [33], and [29]). The paper of 
Longuet-Higgins[19], devoted to random surfaces, served as a starting point for works, describing the statistics of 
nonlinear surface waves. The paper [19] is based on a special model of the rough surface. This model is equivalent 
to the following representation of a random 2-D field:

C(r) = IJ C (q) exp (iqr) d2q. (10.1)

10The measurements described in [17], [31], and [21] were performed in the range of Bragg scattering. Because of this, we cannot 
expect quantitative agreement of these results with the results of the calculations we performed in the Kirchhoff approximation (for 
much larger values of k).
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Figure 9.3: Angular dependence of the back-scattering cross sections for Cox-Munk PDF and for Gaussian approximation of PDF 
in the geometric optics limit (k = OO).

Here, the random spectral density £ (q) is determined by the following relations:

£ (q) is Gaussian random function
(€(q))=o
<£ (q') C (q")) = E (q') S (q' - q") 
<*(q'K(q")> = «* (q')C(q")>=0.

Representation (10.2) is widely used in the theory of turbulence and wave propagation in random media [33], 
[29].11 Thus, the random surfaces considered in [19] are Gaussian.

In the following paper of Longuet-Higgins [20], the model of random functions developed in [19], was applied 
to nonlinear surface gravity waves. In this case, the surface is non-Gaussian and the following decomposition (in 
terms of (10.2)) was used:

C (r) = JJ £ (q) exp (*qr) d2q + JJ Al JJ d2qi exp [i (qi + q2) r] C2 (qi, q2) C (qi) 4 (q2) 
+

(10.3)

JJ <P<1\ JJ d?q2 JJ exp [i (qi + q2 + q3) r] C3 (qi, q2, q3) £ (qi) ^ (q2) ^ (qs) H---- •
11 In paper [19] the more cumbersome representation that includes the finite sum

C (r) = Re ^ ^ cn exp (iknr)

with the random coefficients cn and the following limiting process N —> oo, was used. But all of the results of this approach are 
obtainable from a more compact representation (10.2).
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Figure 9.4: The ratio of the backscattering cross sections for Gaussian and Cox-Munk cases in the limit of geometrical optics 
(k = CO).
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k=30

COX^MUNK
GAUSS

Figure 9.5: The radar cross section as a function of the incident angle Ct = 90° — 9 for k = 30cm~1. Similar to the geometric 
optic limit, the Gaussian approximation reduces the radar cross section in the region near the nadir and increases it in the region of 
small grazing anglep.

The coefficients Ck (qi,qk) were determined by the substitution of (10.3) in the hydrodynamic equations, 
expanded in the perturbation series in powers of As a result, the expansion of the non-Gaussian PDF in the
Gram-Charlier series was obtained. This method describes only small deviations from the Gaussian distribution, 
because it uses the perturbation expansion. The random Gaussian field £ (q), entering in (10.3), is completely 
auxiliary and has no direct meaning.

The model of [20] was used in [16] for description of radar impulses from the sea surface in GO approximation. 
This model was extended in [32] for the joint PDF of elevation and two slopes, and applied to radar altimetry.

In [13] the method of [20] was generalized for random Stokes waves. This work also starts from the auxiliary 
Gaussian field, but the field undergoes some nonlinear transforming, induced by the shape of the Stokes wave. As 
a result an explicit formula for the PDF of elevations was obtained. In paper [14] the same method was applied 
to the joint PDF of elevation and slope for the random Stokes waves. This was possible because of the dynamic 
relationship between the elevation and slope for the Stokes wave. In [38] the restrictions related to the appearance 
of breaking waves were included in the consideration.12

The main goal of the present paper is to develop a model of the sea surface that will allow us to calculate the CF 
of the surface of the arbitrary order, and at the same time satisfy necessary conditions for the second-order PDF

12The assumption that the first-order solution is Gaussian, used in [20] and in the many following papers, is an additional assumption. 
It is rather difficult to ground this assumption, because in the presence of nonlinear effects, the first-order component by itself has 
no physical meaning. It is applied to a nonexistent physical object. If the waves are really linear (amplitudes are very small), the 
Gaussian PDF seems to be natural, but this fact has no relation to the first-order component of the nonlinear waves. Thus, this 
assumption can be considered as a convenient and effective working hypothesis, but only successful comparison with the experimental 
data can serve as a justification for its use.
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Figure 9.6: Azimuthal dependence of the radar cross section for the wind speed U\q = 10777,/S for different values of k and different 
grazing angles 9.

of slopes and for the spectrum. Such CF appear in the modern theories of rough-surface scattering (see section 
2 of this paper). The above mentioned sea surface models do not allow us to achieve this goal. For instance, 
the approach of papers [20] and [32] leads to the truncated Gram-Charlier series that necessarily entail negative 
probabilities. The method of papers [13], [14], and [38] is free from this disadvantage, but it does not allow us 
to find high-order CF, as well as the method in papers [20] and [32]. For instance, non of the above-mentioned 
methods allow us to calculate the scattering cross sections even in the Kirchhoff approximation; only the simplest 
GO approximation can be considered. The method developed in this paper allows us calculating a scattering cross 
section in any scattering theory (see section 2).

Another difference in the method presented in this paper is its phenomenological nature. We did not try to 
utilize dynamical equations of motion, but used the experimental data instead. However, we could have used not 
only experimental data, but also any results of theoretical consideration.

Usage of the decomposition of the multivariate non-Gaussian PDF in the sum of Gaussian PDF allows us to 
describe such non-Gaussian PDF without the difficulties related to the truncation of the Gram-Charlier series. 
This method can be applied to various problems dealing with non-Gaussian distributions.

We should emphasize that the model of the random surface developed is not ergodic. This means that it is 
impossible to create a single surface that is large enough that the averaging over this single surface leads to the 
same mean values as statistical averaging. Each realization of the surface has the (conditional) Gaussian PDF. 
If we want to use this mathematical model for some numerical method of calculation of the scattering field, and 
apply the Monte-Carlo simulation method (instead of analytical averaging) we must first prepare the set of models 
of Gaussian random surfaces. Each of these surfaces must have its specific values of AM, and and the
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total number of surfaces having these parameters and included in the ensemble must be proportional to P^.13

10.2. Summary

The main results of this paper are as follows:
1. For the mathematical description of the (multivariate) non-Gaussian probability distributions we used a de

composition of an arbitrary PDF in the sum of auxiliary Gaussian PDF, having different parameters. This method 
can successfully replace the standard representation of non-Gaussian distributions in terms of the Edgeworth or 
Gram-Charlier series and is free from the main disadvantage of these approaches - negative probabilities. This 
method is very simple in application and it easily allows one to find different mean values as a sum of corresponding 
partial Gaussian mean values.

2. We obtained the multivariate characteristic function for an arbitrary number of differences in elevation of 
a random surface. The corresponding probability distribution satisfies the following conditions: (a) the spectrum 
(or correlation function) of surface is the given (anisotropic) function, and (b) the joint probability distribution of 
two principal slopes of the surface is the given (anisotropic) function.

3. We used the generalized experimental data for the spectrum of sea surface from paper [9], and the data for 
joint PDF of slopes from papers [5] and [6] for the windspeed 10 m • s~1.

4. We calculated the scattering cross sections for the absolutely reflecting air-sea interface in the Kirchhoff 
approximation for the Gaussian and non-Gaussian (Cox-Munk) joint PDF of slopes, and found a significant 
difference between these two cases, especially in the range of small grazing angles.

5. We obtained the universal angular dependence of the variance of slope for the case in which the spectrum 
is symmetrical with respect to some direction (wind direction in our case). This result agrees well with the exper
imental data; it follows only from the symmetry of spectrum and does not depend on the probability distribution 
(see Appendix A).

A. Angular dependence of the variance of slope

The slope of a surface at a point r in a direction determined by the unit vector n, is given by the formula

7(n,r)EnV((r). (A.l)

We assume that the spectrum of surface 4> (q) is symmetrical with respect to wind direction, determined by the 
unit vector mi. If we choose the x-axis along the vector m, we obtain

mi= (1,0); q = (geosp,qsinp), (A.2)

where (p is the angle between q and the wind direction. The symmetry of the spectrum with respect to the wind 
direction means that

$ (?, V) = $ 0, ~<P) ■ (A.3)

The structure function of the surface in terms of the spectrum <F has the form (see (4.6))

D (r, ip) =2 JJ [1 - cos (qr)] $ (q, ip) qdqdp, (A.4)
where r = r' — r" = nr. We present the vector r in the form

r = nr; n = (cos ?/>, sin xp), (A.5)

where xp is the angle between r and the wind direction. For the scalar product qr, entering in (A.4), we have

qr =qr cos (<p - xp). (A.6)
13If we put all of these samples on the single joint surface, we obtain a nonhomogeneous random surface with the Gaussian PDF 

and the correlation function, depending not only on the differences of coordinates, but on both coordinates. The sum of the partial
PDF of the form W = E. PtiWfx corresponds to the random choice of the surface numbered by p with the probability PM.
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Using the known formula [11], 8.511.4,

oo
cos [qr cos (p — V1)] — Jo (Qr) + 2 (—1)" J2n (qr)cos (2rup — 2nip) (A-7)

n=l

we obtain for Z? (r, V7) •

/oo r2n[1 - Jo (gr)] qdq / $ (g, g?) dg?-

o Jo
oo poo r2n-4 y' (-1)” / J2n (gr) gdg / $ (g, g>) cos (2ng? - 2nV>) dg?.
^ J o 7 0

(A.8)

The slope of the surface, taken in the direction n, according to (A.l) can be presented in the form

C (r + nZ) — C (r)7 (r, n) = lim ■ ' V 1^0 l
(A.9)

Therefore,

<72 (r,n)> = lim
/[C(r + nZ)-C(r)]2) D

=!Lmo -----------P-------------= as -p- ’
(n 0 (A.10)

where nl, the argument of the structure function, is equal to (l cos if), l sin iJj). If we substitute (A.8) in (A.10) and 
set r = l —> 0, the known limits

l-Jo(qi) q2 ,. hiql) q2 j t J2n(qi) ^ OQlim---- ~P^ = 7-, lim—f-T = —, and lim—— =0, n = 2,3,...
z—>0 Z2 4 z—o Z2 8 z->o Z2

(A.ll)

appear.
Therefore, only two beginning terms of expansion survive while l —> 0 and the result is

lim _9 i-+o Z2
2-0) dp. (A. 12)

= \f 93dg J $(q,ip)d<p + +^ J g3dg J $ (g> v>) cos (2g? -
But

cos (2c/? — 2t/>) = cos (2</?) cos (2t/>) + sin (2</?) sin (2^), (A A3)

and after integration over ip in (A.12) the term containing sin (2p) vanishes because of (q, <p) = (g, —p). Thus,
the general result is

(72 (V>)> = lim = ^J q3dq J $ (g, g>) dg?+

i cos (2^) / g3dg  $ (g, </?) cos (2y>) dp == a H- b cos (2^),

(A.14)

J
where

a=\ J 93dg J $ (9, ¥>) dg>, 6 = | J q3dq J $ (g, g>) cos (2p) dp.
(A.15)

If we substitute in (A. 14)
cos 2xjj = cos2 -0 — sin2 

we obtain
(t2 (V7)) = T cos2 'ip + B sin2 %p (A-16)

where
/oo p2nq3dq / $ (g, <p) cos2 pdp > 0,

o 7 o
/oo p2txq3dq / $ (g, g?) sin2 g?dg> > 0.

(A.17)

o Jo
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If we set i/* — 0 in (A. 16), we obtain the variance of the slope in the upwind direction:

(A-18)<72(0)) = <7?)=A

If we set ^ — 7r/2 in (A. 16), we obtain the variance of the slope in the crosswind direction:

<72 (tt/2)) ee (7!) = B. (A.19)

Therefore, formula (A. 16) can be presented as follows:

(72 (VO) = (7?) cos2 V> + (ll) sin2 V1- (A.20)

Prom (A.l) we find that the random value of the slope can be presented in the form

7 (n, r) = 7 (r ,-0) = 71 cos -0 + 72 sin ^ (A.21) 

where
7i 72

9C(r)
(A.22)<9# ’ <9y

are the random values of the slopes in the two principal (upwind and crosswind) directions. If we calculate the 
mean square of (A 21), we obtain

(72 WO) — (7?) cos2 t/j + + (7I) cos2 ^ + 2 (7172) sin ^ cos x/j. (A.23)

From comparison of this formula with (A.20) we find that

(7172) = 0. (A.24)

We emphasize that the main results of Appendix A, formulae (A.20) and (A.24), are the precise consequences 
of the symmetry of the spectrum (A.3) and do not depend on the PDF of surface. The symmetry condition is 
enough to derive these formulae.

Note that the angular dependence of the form (A. 14) was widely used in many experimental works.
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